The Heat Shock Response of Mycobacterium Tuberculosis: Linking Gene Expression, Immunology and Pathogenesis
نویسندگان
چکیده
The regulation of heat shock protein (HSP) expression is critically important to pathogens such as Mycobacterium tuberculosis and dysregulation of the heat shock response results in increased immune recognition of the bacterium and reduced survival during chronic infection. In this study we use a whole genome spotted microarray to characterize the heat shock response of M. tuberculosis. We also begin a dissection of this important stress response by generating deletion mutants that lack specific transcriptional regulators and examining their transcriptional profiles under different stresses. Understanding the stimuli and mechanisms that govern heat shock in mycobacteria will allow us to relate observed in vivo expression patterns of HSPs to particular stresses and physiological conditions. The mechanisms controlling HSP expression also make attractive drug targets as part of a strategy designed to enhance immune recognition of the bacterium.
منابع مشابه
Differential protein expression in Mycobacterium tuberculosis susceptible and multidrug resistant isolates
Introduction: Infections by multidrug resistant Mycobacterium tuberculosis (MDR-TB) is a major public health challenge. Secretion of proteins by M. tuberculosis plays an important role in the pathogenesis of the bacterium. We compared the protein profiles of susceptible M. tuberculosis and MDR-TB isolates using proteomic analyses, namely two dimensional gel electrophoresis (2DE) and mass spectr...
متن کاملDissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays.
Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis. The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock...
متن کاملThe alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis.
Mycobacterium tuberculosis is a specialized intracellular pathogen that must regulate gene expression to overcome stresses produced by host defenses during infection. SigH is an alternative sigma factor that we have previously shown plays a role in the response to stress of the saprophyte Mycobacterium smegmatis. In this work we investigated the role of sigH in the M. tuberculosis response to h...
متن کاملExpression of Recombinant Heat-Shock Protein 70 of MCAN/IR/96/LON-49, a Tool for Diagnosis and Future Vaccine Research
Background: Heat shock protein 70 (HSP70) is present in all organisms studied so far, and is a major immunogen in infections caused by pathogens including Leishmania spp. Objective: The aim of this study was to clone and express HSP70 from L. infantum strain MCAN/IR/96/LON-49 and evaluate antibody response against HSP70 in visceral leishmaniasis (VL). Methods: The L. infantum HSP70 gene segment...
متن کاملEnhancement of Sindbis virus self-replicating RNA vaccine potency by linkage of Mycobacterium tuberculosis heat shock protein 70 gene to an antigen gene.
Recently, self-replicating RNA vaccines (RNA replicons) have emerged as an effective strategy for nucleic acid vaccine development. Unlike naked DNA vaccines, RNA replicons eventually cause lysis of transfected cells and therefore do not raise the concern of integration into the host genome. We evaluated the effect of linking human papillomavirus type 16 E7 as a model Ag to Mycobacterium tuberc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comparative and Functional Genomics
دوره 3 شماره
صفحات -
تاریخ انتشار 2002